Scenario Generation for Stochastic Problems via the Sparse Grid Method

نویسندگان

  • Michael Chen
  • Sanjay Mehrotra
  • Robert R. McCormick
چکیده

Efficient generation of scenarios is a central problem in evaluating the expected value of a random function in the stochastic optimization. We study the use of sparse grid scenario generation method for this purpose. We show that this method is uniformly convergent, hence, also epi-convergent. We numerically compare the performance of the sparse grid method with several Quasi Monte Carlo (QMC) methods and the Monte Carlo (MC) method for scenario generation. The numerical results show that the sparse grid method is very efficient if the integrand has sufficient differentiability. A basic implementation of the sparse grid method also achieves competitive performance in the piece-wise linear case when compared to several QMC methods. On our test problems the sparse grid method is consistently superior than the Monte Carlo method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scenario generation for stochastic optimization problems via the sparse grid method

We study the use of sparse grids methods for the scenario generation (or discretization) problem in stochastic programming problems where the uncertainty is modeled using a continuous multivariate distribution. We show that, under a regularity assumption on the random function, the sequence of optimal solutions of the sparse grid approximations, as the number of scenarios increases, converges t...

متن کامل

Scenario Generation

Stability-based methods for scenario generation in stochastic programming arereviewed. In particular, we briefly discuss Monte Carlo sampling, Quasi–Monte Carlo methods,quadrature rules based on sparse grids, and optimal quantization. In addition, we provide someconvergence results based on recent developments in multivariate integration. The method ofoptimal scenario reduction ...

متن کامل

Stochastic Assessment of the Renewable–Based Multiple Energy System in the Presence of Thermal Energy Market and Demand Response Program

The impact of different energy storages on power systems has become more important due to the development of energy storage technologies. This paper optimizes the stochastic scheduling of a wind-based multiple energy system (MES) and evaluates the operation of the proposed system in combination with electrical and thermal demand-response programs and the three-mode CAES (TM-CAES) unit. The prop...

متن کامل

Resilient operation scheduling of microgrid using stochastic programming considering demand response and electrical vehicles

Resilient operation of microgrid is an important concept in modern power system. Its goal is to anticipate and limit the risks, and provide appropriate and continuous services under changing conditions. There are many factors that cause the operation mode of micogrid changes between island and grid-connected modes. On the other hand, nowadays, electric vehicles (EVs) are desirable energy storag...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009